<표 1> 정규화에 대한 정리
1차 정규화 사례 1
<그림 2> 1차 정규화의 응용 1
이 사례의 특징은 주문의 PK(Primary Key)인 주문번호가 중복 속성 값을 가지기 때문에 PK를 가진 데이터베이스 테이블 생성이 불가능하다는 특징이 있다.
1차 정규화 사례 2
<그림 3> 1차 정규화의 응용 2
<그림 3>의 모델을 보면 왼쪽 모델의 일재고 엔티티 타입에는 3개월 분에 대한 장기재고 수량, 주문수량, 금액, 주문금액이 차례대로 기술되어 있다. 이렇게 되면 장기재고 관리가 4개월 이상으로 늘어날 때 모델을 변경해야 하는 치명적이 결함이 있다. 따라서 오른쪽과 같이 1차 정규화를 통해 모델을 분리함으로써 업무 변형에 따른 데이터 모델의 확장성을 확보하도록 해야 한다.
2차 정규화(주식별자에 종속적이지 않은 속성의 분리) 1차 정규화를 진행했지만 속성 중에 주식별자에 종속적이지 않고 주식별자를 구성하는 속성의 일부에 종속적인 속성인, 부분종속 속성(PARTIAL DEPENDENCY ATTRIBUTE) 을 분리하는 것이 2차 정규화(SECOND NORMALIZATION)이다. 2차 정규화는 반드시 자신의 테이블을 주식별자를 구성하는 속성이 복합 식별자일 경우에만 대상이 되고 단일 식별자일 경우에는 2차 정규화 대상이 아니다.
2차 정규화 사례
<그림 4> 2차 정규화 응용
<그림 4>의 모델은 고객번호에 종속적이지 않은 속성들을 분리하여 고객점포라는 새로운 엔티티 타입을 생성하였다. 실전 프로젝트에서는 코드 유형의 엔티티 타입들이 2차 정규화가 되지 않고 하나의 엔티티 타입으로 표현되는 경우가 많이 발견된다. 이 모델에서 함수종속 관계 표기법으로 표기하자면 고객번호 -> (고객명)으로 표시하여 별도의 엔티티 타입으로 분리할 수 있다.
3차 정규화(속성에 종속적인 속성 분리) 3차 정규화(third normalization)는 속성에 종속적인 속성을 분리하는 것이다. 즉 1차 정규화나 2차 정규화를 통해 분리된 테이블에서 속성 중 주식별자에 의해 종속적인 속성 중에서 다시 속성 간에 종속 관계가 발생되는 경우에 3차 정규화를 진행한다.
3차 정규화 실전 적용
<그림 5> 3차 정규화 응용
<그림 5>의 모델은 고객 엔티티 타입에 등록카드에 대한 정보가 포함되어 있는 모습이다. 등록카드번호가 결정자 역할을 하고 있고 등록카드사명과 등록카드유효일자가 의존자 역할을 하는 속성 간의 종속적인 속성이 발견되었으므로 3차 정규화의 대상이 되는 모델이다. 따라서 등록카드에 대한 내용에 대해 별도의 엔티티 타입을 도출한 오른쪽 모델로 만듦으로서 3차 정규화를 완성하였다. 실전 프로젝트에서는 1:1관계의 엔티티 타입이 하나로 통합이 되었거나 업무분석 과정에서 하나의 엔티티 타입에 많은 속성이 포함되어 있을 때 3차 정규화의 대상이 되는 경우가 많이 나타난다. 이 모델에서 함수종속 관계 표기법으로 표기하자면 등록카드번호 -> (등록카드사명, 등록카드유효일자)으로 표시하여 별도의 엔티티 타입으로 분리할 수 있다.
제공 : DB포탈사이트 DBguide.net [출처] 정규화(1,2,3정규화 사례)|작성자 뚜루우 |
출처: http://blog.naver.com/suchang331?Redirect=Log&logNo=150003166165